1.中星六号最新参数

2.气象色谱仪FID、TCD的原理是什么?

3.大气环境监测详细资料大全

气象六参数监测仪_气象参数自动检测系统

在“六五”期间,按照国家计委气象组的决策建立中国的“短期数值天气预报(1~3天)业务系统”。由中国气象局牵头,中科院大气所、国家教委、北京大学等单位参加,李是技术总负责人,整体设计和参加具体技术工作。建成从资料收集、预处理、客观分析、模式计算、检验、产品形成及分发储存一整套在当时中国最大之一的计算机群上自动化实时业务系统,每天运行产品发到中国,使天气预报由定性向定量发展,直到90年代初被新系统所代替。1985年被评为国家科技进步一等奖。

为了延长预报到10天,以满足国民经济建设对天气预报的需要和追赶世界上预报先进水平,国家计委决定立项“国家气象中心扩建工程”(增建中期数值天气预报系统),自行设计新的计算机系统满足气象计算与通信实时需要,设计能制作10天预报的业务方案和流程。为此国家科委也立项“中期数值天气预报研究”国家重点科技攻关,作为工程前期科研。参与工程和科研的有国家气象局、国家教委、中科院有关单位及国防科大数百名专家。李泽椿是工程和科研技术组总负责人,行政领导由章基嘉副局长担任。经过8年研究与建设,建成了当时中国最大的异型机局域网系统(及Cray、Cyber、NCl2780等)和预报中期天气的方案与流程及发往中国各地气象台的预报产品,各地气象台以此制作局地的大气预报,其成果方案也是有关科研工作引用的基础。该系统的建成,成为当时世界上只有少数几个国家能开展此项业务的国家。1995年获国家科技进步二等奖。

李泽椿作为总技术组组长,领导和参与“八五”国家重点科技攻关项目“台风、暴雨灾害性天气监测预测研究”,行政领导由马鹤年副局长担任。台风和暴雨是影响中国主要的天气系统,往往致灾。该项目开展了从大气探测、通信、预报方案、科学外场实验、减灾防灾对策等一系列研究与技术开发。有气象各级有关业务部门、大学、中科院数以百计专家参加。攻关结题后项目中的相当一部分形成业务能力,如沿海汕头与厦门两部自行研制的多普勒雷达建成后在台风监测中起了很大作用。所建立的台风与暴雨的数值预报业务系统(预报南海台风、东海台风等),提高了中国台风、暴雨的监测与预测能力。这项工作获19年国家科技进步二等奖。鉴于现有计算机能力远远满足不了气象部门的发展需求,同时根据并行计算机发展的趋势,李承担了中国气象局重点课题“并行计算机在数值预报领域中的作用”,经过5年研究其成果陆续投入业务使用,使国家气象中心的数值天气业务预报系统,建立在并行计算机的基础上,改进了物理过程和计算精度,大大提高了预报水平。项目被评为2000年国家科技进步二等奖。

李泽椿还从事城市气象研究并将科研成果应用到北京市气象预报中,组织协调北京市建立中尺度短时(6-24小时)天气预报系统,提高了北京市城市预报水平,在重大政治活动中(如50周年国庆等)起了很好作用。其研究和技术工作继续深入发展,可以为城市污染预报及奥运期间北京地区天气预报起到更好的支持作用。

李泽椿长期在国家气象中心(中央气象台)第一线从事日常天气预报业务、科研技术开发和预报系统的工程建设。他的工作是既搞科研又搞科研成果并转化成实际业务能力(生产力),是将大气科学有关部分形成工程化的工作。以此来提高预报的准确度、延长预报时效,给领导部门(院及部委)在经济建设、减灾防灾的决策中提供气象依据,满足广大群众日常生活中对天气预报的需求,给中国各省(市)地的气象台(站)提供制作局地预报的产品,提高中国各地天气预报水平。他指导了一批博士生与硕士生开展研究中国的天气系统运行规律,特别是不同地域和天气形势下的特殊规律,以进一步深入对中国的天气系统的认识与提高中、短期天气预报水平。

以预报员的情怀和科学家的智慧编织未来

作为一名有着数十年预报经验的老预报员,没有谁能和他一样,对未来的天气预报抱有无限美好的期待;而身为一名学术等身的老科技工作者,李泽椿选择超然于丰富的想象力之外,与天马行空的浪漫主义相比,他更愿意立足于坚实的“现实”与“严谨”的土壤上,进行有实际依据的展望。于是,他将“未来”的时间范围界定在未来10至20年。 实现更加精确、及时的天气预报和更加人性化、让公众更为满意的气象服务,不仅是李泽椿所笃信不移的,更是全体气象工作者矢志追求的。 数值预报与天气学预报方法结合的预报体系将仍领风骚,公众满意度指数更能折射预报准确度

放眼未来10到20年,李泽椿认为,天气预报的制作仍将基于数值预报与天气学预报方法结合的预报体系。何为数值预报?简单地说,用计算机数值计算的方式,分析大气动力学、热力学等规律进行预报天气的方法叫数值天气预报,这是现代天气预报的核心。我们知道,大气运动变化,在物理上要符合流体力学和热力学的一些定律,可以用数学的语言写成“数学方程”。预报员将初始数据输入“数学方程”,利用高性能计算机运算出未来天气。虽然目前任何一套模型都不能百分百真实地模拟大气演变,但随着气象卫星、气象雷达等先进探测仪器和计算机应用时间的增长,以及人类对于天气现象的发生、演变及其内在机理和规律的掌握,数值预报将渐入佳境,其结果将愈加精确。一是对风、雨以及灾害性天气的预报准确度更高,另一方面预报的精细化程度将不断提高,“比如,现在大部分地区的天气预报能做到县一级,而到那时,可以进一步细化至乡镇一级。”

未来,天气预报的准确度要如何衡量?在用统计学方法描述天气预报准确率之外,李泽椿更倾向于以公众——被服务对象的感受作为指标。公众对气象部门的满意度将越来越高,对此,李泽椿乐见其成。 资料融合技术将大显身手,天气预报可能升级至地球环境预测

正所谓“巧妇要为有米之炊”。能否计算出准确的数值预报,及时、准确的观测数据是其核心和前提,用专业术语来表述,便是“大气物理参数的初始场”,也即大气目前的状态,通常有温度、湿度、风场、气压场等物理量。李泽椿预测,10至20年后,随着风云卫星反演资料的增多和准确度的提高,我国长期以来处于空白状态的高原和海洋气象资料可能会被填补,这些资料将为数值预报提供更好的“初始场”。更加令人期待的是,气象资料融合技术的出现,可以将分布在全国的地面站观测要素,连同来自卫星、雷达、GPS、微波辐射仪的各种资料融合成一个整体,在提高预报的准确率和及时性上大显身手。

据李泽椿介绍,目前,气象部门已经通过探索大气和海洋、和陆面、生态、冰雪等圈层的耦合机制等,在技术上尝试对地球圈的预报。未来,如果进一步加强部门之间的合作,建立更加完善的地球环境探测站,将气象、水文、生态等观测信息集中起来,在传统气象要素预测的同时,进行水文、辐射、酸雨、污染、沙尘暴、核污染扩散生态要素等大气物理和化学要素观测,将有利于将天气预报内容拓展至地球环境的预测。 计算软实力将不再是“软肋”,预报员作用仍无可替代

计算机是数值预报数学题的解题工具,如今,气象部门已经用上了21万亿次峰值速度的计算机,而百万亿次、千万亿次的高性能计算机也陆续投入使用,李泽椿坚信,未来10至20年内,计算机在性能上并不会成为发展天气预报的瓶颈,气象部门更多要考虑的是如何“用好”计算机,“计算方式、计算格式以及计算编程并行方式等软实力应当会更为成熟,满足使用计算机的要求。”

当科技水平发展到一定程度,预报员的作用会不会就此弱化?“不会”,李泽椿肯定地告诉记者,“预报员在任何时候都是必需的,只是所需人数多少也许会有变化。”大气本身的复杂性使人们对其变化的认识很难一步到位,即使是气象部门研究的数值预报模式,也并不能全部反映其规律,尤其是天气系统具有很强的地域性,而长期驻守在一线的预报员通过大量的实践,对影响当地天气系统的认识更加深刻和清晰,可以逐步深入和细致研究局地物理过程变化的规律,从而不断改进预报模式。 登陆后台风的结构谜题将被破解,未来的防灾减灾更凸显趋利避害

15年8月,在河南驻马店地区,由变性的台风和冷空气相遇形成的“758”大暴雨,给李泽椿的预报生涯留下深刻的印痕。那次过程的降雨量为河南年平均降雨量的两倍,洪水造成了极大的人员和财产损失。台风为什么在当地停滞不前?热带气旋在陆地上变性以后继而加强的机理在于?那次暴雨所引发的预报难题至今仍困扰着气象工作者。

而这一极端天气带来更为深层的科学问题在于,气象部门对于台风登陆后的结构还不甚了解。即便是现在,热带气旋登陆后的内部资料还相对贫乏。李泽椿希望,依靠卫星反演以及雷达遥感资料的反演,以及新探测技术的出现和发展,这一谜题在不久的将来能有所突破。

对台风路径与结构的掌握无疑是提高防灾减灾效益的一个重要方面。暴雨量级的预报会因此更加准确,相应的防范措施会更及时、细致和具有针对性。而李泽椿认为,不仅是台风,气象工作者对于其他灾害性天气形成与发展机理的认识,将逐步深化。同时,同样一个预报结果对不同行业的利弊影响不一,防灾减灾要做到真正意义上的趋利避害。随着气象部门对各行各业受气象影响的需求日益了解,针对交通、航空、农业、水利等行业的预报服务将更具针对性、个性化和精细化。 即时、贴身、无缝隙的气象服务将不再是梦,互动服务离不开公众意识的提高

未来总是充满无限可能。能否有一种现代化、高科技的气象服务终端,使公众可以更加及时、便捷地获取天气信息尤其是灾害性天气的信息?李泽椿认为,在气象部门人性化服务理念的指引下,如此及时、贴身的气象服务在不远的将来,不再是梦。

其实,在这一方面,李泽椿有着亲身体验。他曾在美国的超市购买到一种即时气象信息的终端设备,通过该终端,可以查到全球的一万多个气象站的气象资料,以及各地的天气实况和预报为公司和家庭个人使用。让他为之一惊的是,这种设备竟然是在中国生产的。李泽椿认为,如果能够建立起强大的气象数据库作支撑,并形成气象信息数据传递的网络,中国制造出自己的类似这种终端设备的服务体系将为时不远矣。

“当然,我们的天气预报还存在着‘缝隙’,这对于即时天气信息的获取形成了一定的阻碍。”李泽椿进一步解释说,这一“缝隙”在此处是指0至6小时和10到30天的预报。对于灾害性天气,气象部门可以通过雷达和气象卫星做好短时和临近预报,提前半个小时到1个小时对于防灾减灾至关重要。但是如果要预报6小时以后的正常状态下的天气,就“有待于通过观测系统和预报系统的完善加以实现”。李泽椿尤其强调这样一种观点,公众的需求会引领服务的发展,但是要做到真正意义上的“互动”服务,社会各界以及公众应了解气象,提高气象知识化程度,增强防灾减灾意识,加之各部门的联动与配合愈加协调,方能实现提高气象服务水平与公众满意度的“鱼与熊掌兼得”。

中星六号最新参数

一般来说温度、降水量、气压等气象数据都是公开的。只不过国内的数据渠道需要付费,既然钱能买到本身就说明不是什么绝密。

目前记录最详细的全球气象资料可以追溯到民国时期,从1901-2020年全球逐年/逐月/逐日/逐时气象数据都可以免费获取到。如图中所示,地图上红色密密麻麻的图钉,代表着一个个气象观测站,点击任意一个站点就可以获取该站点的经纬度信息,点击确定即可调取该站点的气象数据。考虑到很多气象站是建了拆、拆了又建,而且早在五六十年代的时候还没有那么多气象站。所以一般来说会先查逐年数据,然后根据该站点能提供的年份去查对应的逐月数据,最后再细化到逐日/逐时数据,根据实际情况而定。

历史气象数据预览

事实上我们更关心的还是气象数据的准确性,所以会发现系统里有不同的数据栏目如:实测数据、网格数据、年鉴资料等。它们的来源不尽相同,实测是NOAA的地面观测资料、网格是NASA的卫星反演产品、年鉴资料由国家统计局颁布相当于一个标准的参照。比如同一个地域的降水量,不同栏目获取到的数据或多或少会存在差异。其实这对数据分析和科研来说是一件好事,多渠道的数据相互比对,可以给我们提供更多的参考依据。

气象色谱仪FID、TCD的原理是什么?

中星6号最新参数:

下行频率:3680 V符号频率: 27500 中国气象

下行频率:3706 H符号频率: 4420 福建广播电台

下行频率:3706 H符号频率: 4420 福建交通电台

下行频率:3706 H符号频率: 4420 福建东南 免费

下行频率:3750 H符号频率:10490 湖南卫视 免费

下行频率:3750 H符号频率:10490 金鹰卡通 免费

下行频率:3750 H符号频率:10490 湖南新闻电台

下行频率:3750 H符号频率:10490 湖南经济电台

下行频率:3750 H符号频率:10490 湖南文化电台

下行频率:3771 H符号频率: 9375 CCTV-E

下行频率:3771 H符号频率: 9375 CCTV-F

下行频率:3771 H符号频率: 9375 CCTV-4

下行频率:3771 H符号频率: 9375 CCTV-9

下行频率:3786 H符号频率: 5440 四川卫视

下行频率:3786 H符号频率: 5440 四川广播电台

下行频率:3796 H符号频率: 6930 贵州新闻电台

下行频率:3796 H符号频率: 6930 贵州经济电台

下行频率:3796 H符号频率: 6930 贵州音乐电台

下行频率:3796 H符号频率: 6930 贵州交通电台

下行频率:3796 H符号频率: 6930 贵州电台

下行频率:3796 H符号频率: 6930 贵州卫视

下行频率:3807 V符号频率: 6000 重庆卫视

下行频率:3807 V符号频率: 6000 重庆新闻电台

下行频率:3807 V符号频率: 6000 重庆音乐电台

下行频率:3807 V符号频率:6000 重庆交通电台

下行频率:3807 V符号频率:6000 重庆经济电台

下行频率:3808 H符号频率:8800 炫动卡通

下行频率:3808 H符号频率: 8800 东方卫视

下行频率:3825 V符号频率:6780 浙江卫视

下行频率:3825 V符号频率:6780 浙江新闻电台

下行频率:3825 V符号频率:6780 浙江音乐调频96.8

下行频率:3825 V符号频率: 6780 浙江经济电台

下行频率:3825 V符号频率:6780 浙江文艺电台

下行频率:3825 V符号频率:6780 城市之声 免费

下行频率:3825 V符号频率:6780 浙江交通电台

下行频率:3825 V符号频率:6780 浙江旅游电台

下行频率:3825 V符号频率:6780 城市之星

下行频率:3834 V符号频率:5400 山东经济电台

下行频率:3834 V符号频率:5400 山东生活电台

下行频率:3834 V符号频率: 5400 山东文学电台

下行频率:3834 V符号频率: 5400 山东交通电台

下行频率:3834 V符号频率: 5400 山东第六电台

下行频率:3834 V符号频率: 5400 山东卫视

下行频率:3834 V符号频率: 5400 山东新闻电台

下行频率:3840 H符号频率: 27500 CCTV-1

下行频率:3840 H符号频率: 27500 CCTV-2

下行频率:3840 H符号频率: 27500 CCTV-7

下行频率:3840 H符号频率: 27500 CCTV-10

下行频率:3840 H符号频率: 27500 CCTV-11

下行频率:3840 H符号频率: 27500 CCTV-12

下行频率:3840 H符号频率: 27500 CCTV-音乐

下行频率:3846 V符号频率: 5950 山西卫视

下行频率:3854 V符号频率: 4420 河南卫视

下行频率:3854 V符号频率: 4420 河南经济电台

下行频率:3854 V符号频率: 4420 河南文艺电台

下行频率:3854 V符号频率: 4420 河南信息电台

下行频率:3854 V符号频率: 4420 河南人民广播电台

下行频率:3861 V符号频率: 4800 宁夏新闻电台

下行频率:3861 V符号频率: 4800 宁夏交通电台

下行频率:3861 V符号频率: 4800 宁夏卫视

下行频率:3872 V符号频率:9080 陕西卫视

下行频率:3872 V符号频率:9080 农林卫视

下行频率:3880 H符号频率:27500 CCTV-少儿

下行频率:3885 V符号频率: 4340 山东教育

下行频率:3892 V符号频率: 4420 江西卫视

下行频率:3892 V符号频率: 4420 江西广播电台

下行频率:3892 V符号频率: 4420 江西经济电台

下行频率:3900 V符号频率: 6670 江苏卫视

下行频率:3900 V符号频率: 6670 江苏文艺电台

下行频率:3900 V符号频率: 6670 江苏音乐电台

下行频率:3900 V符号频率: 6670 江苏交通电台

下行频率:3900 V符号频率:6670 江苏新闻电台

下行频率:3900 V符号频率: 6670 江苏健康电台

下行频率:3910 V符号频率: 6400 甘肃广播电台

下行频率:3910 V符号频率: 6400 甘肃卫视

下行频率:3929 V符号频率: 8840 安徽经济电台

下行频率:3929 V符号频率: 8840 安徽广播电台

下行频率:3929 V符号频率: 8840 安徽卫视

下行频率:3940 V符号频率:5950 天津文艺电台

下行频率:3940 V符号频率:5950 天津区县电台

下行频率:3940 V符号频率: 5950 天津新闻电台

下行频率:3940 V符号频率: 5950 天津音乐电台

下行频率:3940 V符号频率: 5950 天津滨海电台

下行频率:3940 V符号频率: 5950 天津卫视

下行频率:3951 V符号频率: 9520 北京卫视

下行频率:3951 V符号频率: 9520 卡酷动画

下行频率:4000 H符号频率: 27500 中国教育-1

下行频率:4060 V符号频率: 27500 电视指南

下行频率:4147 H符号频率: 6150 湖北卫视

下行频率:4147 H符号频率: 6150 湖北新闻电台

下行频率:4158 H符号频率: 8680 青海卫视

下行频率:4158 H符号频率: 8680 青海综合

下行频率:4171 H符号频率: 9200 内蒙古卫视(维语)

下行频率:4171 H符号频率: 9200 内蒙古卫视

下行频率:4175 V符号频率: 5990 中国之声

下行频率:4175 V符号频率: 5990 经济之声

下行频率:4175 V符号频率: 5990 音乐之声

下行频率:4175 V符号频率: 5990 华夏之声(双语)

下行频率:4175 V符号频率: 5990 91.5轻松调频

下行频率:4175 V符号频率: 5990 金曲调频

下行频率:4175 V符号频率: 5990 环球资讯电台

下行频率:4175 V符号频率: 5990 华夏之声(普通话)

下行频率:4175 V符号频率: 5990 神州之声

下行频率:4175 V符号频率: 5990 民乐

下行频率:4175 V符号频率: 5990 GW11/GW12

下行频率:4175 V符号频率: 5990 GW13/GW14

下行频率:4175 V符号频率: 5990 GW15/GW16

下行频率:4175 V符号频率: 5990 GW17/GW18

下行频率:4175 V符号频率: 5990 GW19/GW20

下行频率:4175 V符号频率: 5990 GW21/GW22

下行频率:4175 V符号频率: 5990 GW23/GW24

下行频率:4175 V符号频率: 5990 GW25/GW26

下行频率:4175 V符号频率:5990 GW27/GW28

下行频率:4175 V符号频率:5990 GW29/GW30

下行频率:4192 V符号频率:6000 河北卫视

下行频率:4192 V符号频率: 6000 河北人民广播电台

下行频率:4192 V符号频率: 6000 河北音乐电台

下行频率:4192 V符号频率: 6000 河北经济电台

下行频率:4192 V符号频率:6000 河北生活电台

下行频率:4192 V符号频率:6000 河北城市电台

大气环境监测详细资料大全

气相色谱仪\x0d\  ◆ 用途:\x0d\  气相色谱是对气体物质或可以在一定温度下转化为气体的物质进行检测分析。由于物质的物性不同,其试样中各组份在气相和固定液液相间的分配系数不同,当汽化后的试样被载气带入色谱柱中运行时,组份就在其中的两相间进行反复多次分配,由于固定相对各组份的吸附或溶解能力不同, 虽然载气流速相同,各组份在色谱柱中的运行速度就不同,经过一定时间的流动后,便彼此分离,按顺序离开色谱柱进入检测器,产生的讯号经放大后,在记录器上描绘出各组份的色谱峰。 根据出峰位置,确定组分的名称,根据峰面积确定浓度大小。这就是气象色谱仪的工作原理。\x0d\  ◆气相色谱仪的特点\x0d\  2001型气相色谱仪,是由微型计算机控制的多功能实验室用分析仪器,具有热导池、氢焰离子化、电子捕获、火焰光度、氮磷五种检测器,可配填充柱或毛细管柱。仪器可进行恒温操作或五阶程序升温操作。仪器集成度高,设计先进,实现了较高程度自动化,可通过键盘实现检测器参数、温度参数设置。可对填充柱及毛细管及柱头压力实时显示,仪器用单气路结构。2001型气相色谱仪结构合理性能稳定可靠,操作简单,维修方便。可应用于包装、油墨、石油、化工、农药、医药卫生、商品检验、环境保护以及高等院校等\x0d\  生产及科研部门。\x0d\  ◆ 技术指标:\x0d\  △五阶程序升温,升温速率0.1~30℃/min,以0.1℃为增量,初时至终时范围0~255 min,以1min为增量。\x0d\  △柱温箱内部尺寸(mm):长270×宽220×高260\x0d\  △仪器外型尺寸(mm):长655×宽460×高450\x0d\  △重量:47kg\x0d\  △控温精度:±0.1℃-±0.2℃,\x0d\  △控温范围:室温+6℃-399℃\x0d\  △机器具有自诊断、掉电保护、秒表、文件存储及调用等功能\x0d\  (一)检测器部分\x0d\  根据不同的样品分析要求,有五种检测器可供选择\x0d\  △FID氢火焰检测器\x0d\  △TCD热导池检测器\x0d\  △ECD电子捕获检测器\x0d\  △NPD氮磷检测器\x0d\  △FPD火焰光度检测器\x0d\  (二)进样器部分\x0d\  为了得到可靠的检测数据,适应不同的分析要求,同时具有填充柱和毛细管柱两个进样口。具有柱头进样、玻璃内衬进样、分流/不分流进样器。可满足不同口径的毛细管、填充柱分析。进样口具有先进的进样导向器,各种口径毛细管的玻璃内衬带有特质弹簧,能自动找平衡定位。\x0d\  (三)柱箱部分\x0d\  仪器的大柱箱紧凑、风道布局合理、适度均匀、升温/降温速度快,因此,改善了分析结果的重现性,提高了分析能力。自动后开门,从350℃降至60℃仅需8分钟。\x0d\  (四)键盘/显示部分\x0d\  全中文键盘输入方式,用大屏幕LCD显示器,左四行为设置区,右四行为实际显示区,清晰、直观、方便。\x0d\\x0d\  (五)气路部分\x0d\\x0d\用背压控制方式,可准确制毛细管柱的载气流速。用质量型流量调节阀决定总流量,用背压阀控制毛细管柱输入压力,还可用隔膜清洗阀调节对进样垫进行吹扫的隔膜清洗流量。填充柱气路用独力气路设计。因此同时可装一个填充柱和一付毛细管柱,互不影响。\x0d\\x0d\  (六)气象色谱仪的工作原理:\x0d\\x0d\  原理是:分子的紫外可见吸收光谱是由于分子中的某些基团吸收了紫外可见辐射光后,发生了电子能级跃迁而产生的吸收光谱。它是带状光谱,反映了分子中某些基团的信息。可以用标准光谱图再结合其它手段进行定性分析。\x0d\\x0d\  根据Lambert-Beer定律:A=εbc,(A为吸光度,ε为摩尔吸光系数,为液池厚度,c为溶液浓度)可以对溶液进行定量分析。\x0d\\x0d\  你可以用三种农药的波长在某溶液中的最大、最小吸收波长。\x0d\\x0d\  配制溶液-在光谱检测项下进行-调整检测光谱范围及速度--扫描光谱图--吸光度最大处对应波长为最大吸收波长,吸光度最小处对应的波长为最小吸收波长。\x0d\\x0d\气相色谱仪使用说明 \x0d\适用范围 \x0d\\x0d\气相色谱仪是一种分离测定低沸点混合组分的重要仪器,可供化工、生工、食品专业作仪器分析实验用,也可用于科研及常规分析。 \x0d\\x0d\操作规程 \x0d\\x0d\1打开稳压电源; \x0d\2打开氮气阀,打开净化器上的载气开关阀,然后检查是否漏气,保证气密性良好; \x0d\3调节总流量为适当值(根据刻度的流量表测得); \x0d\4调节分流阀使分流流量为实验所需的流量(用皂膜流量计在气路系统面板上实际测量),柱流量即为总流量减去分流量; \x0d\5打开空气、氢气开关阀,调节空气、氢气流量为适当值; \x0d\6根据实验需要设置柱温、进样口温度和FID检测器温度; \x0d\7打开计算机与工作站; \x0d\\x0d\8FID检测器温度达到150oC以上,按FIRE键点燃FID检测器火焰; \x0d\9设置FID检测器灵敏度和输出信号衰减; \x0d\10待所设参数达到设置时,即可进样分析; \x0d\\x0d\11实验完毕后,先关闭氢气与空气,用氮气将色谱柱吹净后关机。 \x0d\\x0d\注意事项 \x0d\\x0d\(必须经严格的培训和考核合格后方可使用该仪器,未经允许不得使用) \x0d\\x0d\1氢气发生器液位不得过高或过低; \x0d\\x0d\2空气源每次使用后必须进行放水操作; \x0d\\x0d\3进样操作要迅速,每次操作要保持一致; \x0d\\x0d\4使用完毕后须在记录本上记录使用情况

大气环境监测是对大气环境中污染物的浓度,观察、分析其变化和对环境影响的测定过程。大气污染监测是测定大气中污染物的种类及其浓度,观察其时空分布和变化规律。

所监测的分子状污染物主要有硫氧化物、氮氧化物、一氧化碳、臭氧、卤代烃、碳氢化合物等;颗粒状污染物主要有降尘、总悬浮微粒、飘尘及酸沉降。大气质量监测是对某地区大气中的主要污染物进行布点样、分析。通常根据一个地区的规模、大气污染源的分布情况和源强、气象条件、地形地貌等因素,进行规定项目的定期监测。

中国规定的大气质量监测项目有二氧化硫、氮氧化物、总悬浮颗粒物、一氧化碳和降尘。此外,还可根据区域大气污染的不同特点,增加碳氢化合物、总氧化剂、可吸入颗粒物、二氧化氮、氟化物、铅等特征污染物的监测。

基本介绍 中文名 :大气环境监测 外文名 :atmospheric environmental monitoring 学科 :环境科学 样点布设法 :四种 方法标准,监测项目,样点布设,格线布点法,扇形布点法,功能区布点法,气样集,非浓缩样法,浓缩样法, 方法标准 标准编号 标准名称 实施日期 HJ 77.2-2008 环境空气和废气 二恶英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法 2009-4-1 国家环保总局公告 2007年第4号 环境空气品质监测规范(试行) 2007-1-19大气环境监测 HJ/T 75—2007 固定污染源烟气排放连续监测技术规范(试行) 2007-8-1 HJ/T 76—2007 固定污染源烟气排放连续监测系统技术要求及检测方法(试行) 2007-8-1 HJ/T 373-2007 固定污染源监测质量保证与质量控制技术规范(试行) 2008-1-1 HJ/T 3-2007 固定源废气监测技术规范 2008-3-1 HJ/T 398-2007 固定污染源排放烟气黑度的测定 林格曼烟气黑度图法 2008-3-1 HJ/T 400-2007 车内挥发性有机物和醛酮类物质样测定方法 2008-3-1 HJ/T 174-2005 降雨自动样器技术要求及检测方法 2005-5-8 HJ/T 175-2005 降雨自动监测仪技术要求及检测方法 2005-5-8 HJ/T 193-2005  环境空气品质自动监测技术规范 2006-1-1 HJ/T 194-2005  环境空气品质手工监测技术规范 2006-1-1 HJ/T 165-2004 酸沉降监测技术规范 2004-12-9 HJ/T 167-2004 室内环境空气品质监测技术规范 2004-12-9 HJ/T 93-2003 PM10样器技术要求及检测方法 2003-7-1 HJ/T 62-2001 饮食业油烟净化设备技术方法及检测技术规范(试行) 2001-8-1 HJ/T 63.1-2001 大气固定污染源 镍的测定 火焰原子吸收分光光度法 2001-11-1 HJ/T 63.2-2001 大气固定污染源 镍的测定 石墨炉原子吸收分光光度法 2001-11-1 HJ/T 63.3-2001 大气固定污染源 镍的测定 丁二酮肟-正丁醇萃取分光光度法 2001-11-1 HJ/T 64.1-2001 大气固定污染源 镉的测定 火焰原子吸收分光光度法 2001-11-1 HJ/T 64.2-2001 大气固定污染源 镉的测定 石墨炉原子吸收分光光度法 2001-11-1 HJ/T 64.3-2001 大气固定污染源 镉的测定 对-偶氮苯重氮氨基偶氮苯磺酸分光光度法 2001-11-1 HJ/T 65-2001 大气固定污染源 锡的测定 石墨炉原子吸收分光光度法 2001-11-1 HJ/T 66-2001 大气固定污染源 氯苯类化合物的测定 气相色谱法 2001-11-1 HJ/T 67-2001 大气固定污染源 氟化物的测定 离子选择电极法 2001-11-1 HJ/T 68-2001 大气固定污染源 苯胺类的测定 气相色谱法 2001-11-1 HJ/T 69-2001 燃煤锅炉烟尘和二氧化硫排放总量核定技术方法—物料衡算法(试行) 2001-11-1 HJ/T 77-2001 多氯代二苯并二恶英和多氯代二苯并呋喃的测定 同位素稀释高解析度毛细管气相色谱/高分辨质谱法 2002-1-1 HJ/T 54-2000 车用压燃式发动机排气污染物测量方法 2000-9-1 HJ/T 55-2000 大气污染物无组织排放监测技术导则 2001-3-1 HJ/T 56-2000 固定污染源排气中二氧化硫的测定 碘量法 2001-3-1 HJ/T 57-2000 固定污染源排气中二氧化硫的测定 定电位电解法 2001-3-1 GB/T 12301-1999 船舱内非危险货物产生有害气体的检测方法 2000-8-1 HJ/T 27-1999 固定污染源排气中氯化氢的测定 硫氰酸汞分光光度法 2000-1-1 HJ/T 28-1999 固定污染源排气中氰化氢的测定 异烟酸-吡唑啉酮分光光度法 2000-1-1 HJ/T 29-1999 固定污染源排气中铬酸雾的测定 二苯基碳酰二肼分光光度法 2000-1-1 HJ/T 30-1999 固定污染源排气中氯气的测定 甲基橙分光光度法 2000-1-1 HJ/T 31-1999 固定污染源排气中光气的测定 苯胺紫外分光光度法 2000-1-1 HJ/T 32-1999 固定污染源排气中酚类化合物的测定 4-氨基安替比林分光光度法 2000-1-1 HJ/T 33-1999 固定污染源排气中甲醇的测定 气相色谱法 2000-1-1 HJ/T 34-1999 固定污染源排气中氯乙烯的测定 气相色谱法 2000-1-1 HJ/T 35-1999 固定污染源排气中乙醛的测定 气相色谱法 2000-1-1 HJ/T 36-1999 固定污染源排气中丙烯醛的测定 气相色谱法 2000-1-1 HJ/T 37-1999 固定污染源排气中丙烯腈的测定 气相色谱法 2000-1-1 HJ/T 38-1999 固定污染源排气中非甲烷总烃的测定 气相色谱法 2000-1-1 HJ/T 39-1999 固定污染源排气中氯苯类的测定 气相色谱法 2000-1-1 HJ/T 40-1999 固定污染源排气中苯并(a)芘的测定 高效液相色谱法 2000-1-1 HJ/T 41-1999 固定污染源排气中石棉尘的测定 镜检法 2000-1-1 HJ/T 42-1999 固定污染源排气中氮氧化物的测定 紫外分光光度法 2000-1-1 HJ/T 43-1999 固定污染源排气中氮氧化物的测定 盐酸萘乙二胺分光光度法 2000-1-1 HJ/T 44-1999 固定污染源排气中一氧化碳的测定 非色散红外吸收法 2000-1-1 HJ/T 45-1999 固定污染源排气中沥青烟的测定 重量法 2000-1-1 HJ/T 46-1999 定电位电解法二氧化硫测定仪技术条件 2000-1-1 HJ/T 47-1999 烟气样器技术条件 2000-1-1 HJ/T 48-1999 烟尘样器技术条件 2000-1-1 GB 9804-1996 烟度卡标准 19-1-1 GB/T 16157-1996 固定污染源排气中颗粒物测定与气态污染物样方法 1996-3-6 HJ 14-1996  环境空气品质功能区划分原则与技术方法 1996-7-22 GB/T 15432-1995  环境空气 总悬浮颗粒物的测定 重量法 1995-8-1 GB/T 15433-1995 环境空气 氟化物的测定 石灰滤纸.氟离子选择电极法 1995-8-1 GB/T 15434-1995 环境空气 氟化物质量浓度的测定 滤膜.氟离子选择电极法 1995-8-1 GB/T 15435-1995  环境空气 二氧化氮的测定 Saltzman法 1995-8-1 GB/T 15436-1995  环境空气 氮氧化物的测定 Saltzman法 1995-8-1 GB/T 15437-1995  环境空气 臭氧的测定 靛蓝二磺酸钠分光光度法 1995-8-1 GB/T 15438-1995  环境空气 臭氧的测定 紫外光度法 1995-8-1 GB/T 15439-1995  环境空气 苯并[a]芘的测定 高效液相色谱法 1995-8-1 GB/T 15501-1995 空气品质 硝基苯类(一硝基和二硝基化合物)的测定 锌还原-盐酸萘乙二胺分光光度法 1995-8-1 GB/T 15502-1995 空气品质 苯胺类的测定 盐酸萘乙二胺分光光度法 1995-8-1 GB/T 15516-1995  空气品质 甲醛的测定 乙酰丙酮分光光度法 1995-8-1 GB/T 15262-94  环境空气 二氧化硫的测定 甲醛吸收-副玫瑰苯胺分光光度法 1995-6-1 GB/T 15263-94  环境空气 总烃的测定 气相色谱法 1995-6-1 GB/T 15264-94  环境空气 铅的测定 火焰原子吸收分光光度法 1995-6-1 GB/T 15265-94  环境空气 降尘的测定 重量法 1995-6-1 GB/T 14584-93 空气中碘-131的取样与测定 1994-4-1 GB/T 14668-93  空气品质 氨的测定 纳氏试剂比色法 1994-5-1 GB/T 14669-93  空气品质 氨的测定 离子选择电极法 1994-5-1 GB/T 14670-93  空气品质 苯乙烯的测定 气相色谱法 1994-5-1 GB/T 14675-93  空气品质 恶臭的测定 三点比较式臭袋法 1994-3-15 GB/T 14676-93  空气品质 三甲胺的测定 气相色谱法 1994-3-15 GB/T 14677-93  空气品质 甲苯 二甲苯 苯乙烯的测定 气相色谱法 1994-3-15 GB/T 14678-93 空气品质 硫化氢、甲硫醇、甲硫醚和二甲二硫的测定 气相色谱法 1994-3-15 GB/T 14679-93 空气品质 氨的测定 次氯酸钠-水杨酸分光光度法 1994-3-15 GB/T 14680-93  空气品质 二硫化碳的测定 二乙胺分光光度法 1994-3-15 HJ/T 3-93 汽油机动车怠速排气监测仪技术条件 1993-12-1 HJ/T 4-93  柴油车滤纸式烟度计技术条件 1993-1-1 GB 13580.1-92  大气降水样分析方法总则 1993-3-1 GB 13580.2-92  大气降水样品的集与保存 1993-3-1 GB 13580.3-92  大气降水电导率的测定方法 1993-3-1 GB 13580.4-92  大气降水pH值的测定电极法 1993-3-1 GB 13580.5-92 大气降水中氟、氯、亚硝酸盐、硝酸盐、硫酸盐的测定 离子色谱法 1993-3-1 GB 13580.6-92  大气降水中硫酸盐的测定 1993-3-1 GB 13580.7-92 大气降水中亚硝酸盐测定 N-(1-萘基)-乙二胺光度法 1993-3-1 GB 13580.8-92 大气降水中硝酸盐的测定 1993-3-1 GB 13580.9-92 大气降水中氯化物的测定 硫氰酸汞高铁光度法 1993-3-1 GB 13580.10-92 大气降水中氟化物的测定 新氟试剂光度法 1993-3-1 GB 13580.11-92 大气降水中氨盐的测定 1993-3-1 GB 13580.12-92 大气降水中钠、钾的测定 原子吸收分光光度法 1993-3-1 GB 13580.13-92 大气降水中钙、镁的测定 原子吸收分光光度法 1993-3-1 GB/T 13906-92  空气品质 氮氧化物的测定 1993-9-1 HJ/T 1-92  气体参数测量和样的固定位装置 1993-1-1 GB 5468-91 锅炉烟尘测定方法 1992-8-1 GB/T 13268-91 大气 试验粉尘标准样品 黄土尘 1992-8-1 GB/T 13269-91 大气 试验粉尘标准样品 煤飞灰 1992-8-1 GB/T 13270-91 大气 试验粉尘标准样品 模拟大气尘 1992-8-1 GB 8969-88 空气品质 氮氧化物的测定 盐酸萘乙二胺比色法 1988-8-1 GB 80-88 空气品质 二氧化硫的测定 四氯巩盐-盐酸副玫瑰苯胺比色法 1988-8-1 GB 81-88 空气品质 飘尘中苯并(a)芘的测定 乙酰化滤纸层析萤光分光光度法 1988-8-1 GB 9801-88 空气品质 一氧化碳的测定 非分散红外法 1988-12-1 GB/T 6921-86  大气飘尘浓度测量方法 1987-3-1 GB 4920-85 硫酸浓缩尾气硫酸雾的测定 铬酸钡比色法 1985-8-1 GB 4921-85 工业废气 耗氧值和氧化氮的测定 重铬酸钾氧化、萘乙二胺比色法 1985-8-1 监测项目 大气污染物按其存在状态分为粒子状污染物和分子状污染物(亦称气态污染物)两大类。根据污染物的存在状态,大气污染监测项目也分粒状污染物监测和气态污染物监测两大监测项目。其中,粒状污染物监测又分总悬浮微粒监测、飘尘监测、降尘监测和粒状污染物成分监测;气态污染物监测包括二氧化硫、氮氧化物、—氧化碳、光化学氧化剂(O3)、氯化氢、氟化氢、总烃等。总之大气环境监测的监测项目是相当多的,上面只列举了其中的—部分。即使这—部分,也不是任何单位在任何—次监测工作中,都要进行监测。中国在《大气环境质量标准》中,只对总悬浮微粒、飘尘、二氧化硫、氮氧化物、—氧化碳和光化学氧化剂六个项目的限值作了规定,其中飘尘作为参考标准。实际上,在大气环境监测中,总悬浮微粒、二氧化硫、氮氧化物三项是必测项目,其他项目则要根据实际情况和监测目的进行选择。 样点布设 在大气环境监测中,样点的位置和点数的合理布设,是完成监测目的和保证数据具有代表性的重要工序之—。根据污染源分布情况和监测目的不同,样点的布设方法分为 格线布点法、同心圆布点法、扇形布点法和功能区布点法四种。 格线布点法 在监测范围内,污染源较多而且很分散时,用此法布设样点。将整个监测区域画成方形格线,在格线线的结点或方格的中心布设样点,点的数目和间距要根据人力、物力和实际情况决定。 同心圆布点法 有多个较集中的污染源,调查污染源周围各个方向和距离的污染情况时,以污染源为中心,在地面上画出若干个同心圆,再从圆心向周围引出若干条辐射线,同心圆的间距越向外越大例如4:10:20:40,在每个圆上分别设几个样点。 扇形布点法 对单个高架点源,以烟羽流向为轴线,在点源下风方向的地面上定出—个扇形区域作为布点范围,扇形的角度—般约为45。,也可取60。,但不宜大于90。。样点设在扇形面内距点源不同距离的若干条(例如三、四条)弧线上,其中有—条弧线必需处在最大落地浓度出现频率最高的距离上(约10倍于烟囱有效高度处),每条弧线上至少设3个样点,彼此间的间隔为10o~20o. 功能区布点法 将要监测的区域按工业区、居民区、商业区、交通枢纽、文化区、公园等分成若干个功能区,各功能区布设—定数量的监测点。 在实际大气环境监测中,上述几种布点方法的使用,往往以—种方法为主,再用其他方法作必要的调整,以便样点的布设更具有代表性。此外,布点时还应注意:(1)在交通频繁地方布点时,点的位置应离开道路边缘l5~30m;(2)所有样点都应避开林地、高墙等明显的障碍物;(3)在高大建筑物下风侧布点时,点与建筑物的距离为建筑物高度的10倍,无条件时至少要保持2倍以上。 气样集 根据污染物在大气中的存在形态、浓度和分析方法灵敏度的不同,气样集方法分非浓缩样法和浓缩样法两种。 非浓缩样法 亦称直接样法。当待测物在大气中的含量较大或分析方法的灵敏度较高时,用塑胶袋、注射器或其它合适的容器,集少量气样,即可供分析测定使用。 浓缩样法 当待测物在大气中的浓度较低或分析方法的灵敏度不够高时,要使用浓缩样法集气样。使用最广的浓缩样法有过滤法或溶液吸收法。 (1)过滤法。此法用于粒子状污染物的集。样时,将滤纸或有机滤膜夹持在专用的样头上,将样头与流量计、抽气泵连线。启动抽气泵后,气体分子透过滤纸(或滤膜)经流量计计量,再经抽气泵外排,粒状物则被阻留在滤纸或滤膜上,抽气时间越长,滤纸上阻留的粒状物也越多。 (2)溶液吸收法。多用于分子状或蒸气污染物集,捕集待测物质的仪器为吸收管,吸收管中盛有能与待测物质发生作用的吸收液,将吸收管与流量计和抽气泵连线。启动抽气泵,当大气以气泡形式通过盛有吸收管的吸收液时,在气—液界面上,发生待测气体的溶解作用或与吸收液的化学反应,使待测物留在吸收液中。与此同时,气泡内的分子因本身的热运动而迅速扩散到气泡表面,继续发生溶解作用或化学反应,如此继续下去,即完成待测物的吸收过程。显然,通气时间越长,吸收液中待测物的浓度就越大,因此,样过程就是被测物的浓缩过程。浓缩样法除过滤法和溶液吸收法外,还有固体样管阻留法、低温冷凝法等