1.中欧卫星导航系统的频率共用是什么意思?

2.船的大家族都有那些?

3.2021中国航天成就有哪些

4.卫星电话详细资料大全

气象世界地图_世纪气象导航

航天有神舟系列(载人航天),嫦娥系列(月球勘察),北斗系列(导航)及一系列通讯,气象卫星如风云系列;

航空有航母舰载载机、四代重型歼击机、大飞机(民航大型客机)等。

航空指飞行器在地球大气层内的航行活动,航天指飞行器在大气层外宇宙空间的航行活动。航空航天事业的发展是20世纪科学技术飞跃进步,社会生产突飞猛进的结果。航空航天的成果集中了科学技术的众多新成就。迄今为止的航空航天活动,虽然还只是人类离开地球这个摇篮的最初几步,但它的作用已远远超出科学技术领域,对政治、经济、军事以至人类社会生活都产生了广泛而深远的影响。

中欧卫星导航系统的频率共用是什么意思?

1、三者的区别:

RS 是遥感,是传感器接受地面或其他信息将其以图像胶片或数据磁带记录下来,它所拍摄的画面是静态的,有颜色分层,一般碰到像告诉你所拍摄的对象所发射的波段是不一样的,则是需要用RS,或者是像人口居民分布,也要用到RS,只要记得它所得到的图象是简单并且是静态的就可以了

GIS 是地理信息系统,可以说它应是多张RS图层的合成,你能够从图中得到丰富的信息,并且它具备数据的分析和表达.碰到选择题它一般会给你提示,比如多张图层合成的,或者告诉你将居民分布同交通线路图一起组合的图之类,则是GIS

GPS 是全球定位系统 ,顾名思义是定位用的,你只要看到题目是说要定位,动态跟踪的,那就是需要GPS了

2、如何在考试中区别RS , GPS, GIS:

RS实际上就是从空间俯视得到的照片,遥感图的形式呈现,因此凡是涉及到实时监测某地理事物的变化的一般可以认为是RS;GPS是测量高度、定位的,因此涉及测量和定位的字眼的都可以是GPS;GIS就是地理专业软件,它作用是决策,因此得出什么结论之类的就可以算GIS

这三者的的关系类似于 一个大脑 两只眼睛

GIS是大脑,是负责处理、分析的

GPS是提供定位等数据的

RS主要是提供遥感影像等数据

GPS和RS为GIS提供了数据源

拓展:

卫星定位的基本原理是:围绕地球运转的人造卫星连续向地球表面发射经过编码调制的连续波无线电信号,编码中载有卫星信号准确的发射信号,以及不同时间卫星在空间的准确位置。

载于海陆空各类运载体上的卫星导航接收机在接收到卫星发出的无线电信号后,如果它们有与卫星钟准确同步的时钟,便能测量出信号的到达时间,从而能算出信号在空间的传播时间。再用这个传播时间乘以信号在空间的传播速度,便能求出接收机与卫星之间的距离。

参考资料:

百度百科 卫星定位技术

船的大家族都有那些?

意思就是大家合作共赢了。以前欧洲说好的一起研发,结果上车了都已经,还是把中国卖了。

现在中国北斗都民用好几年了,欧洲伽利略还是个渣渣所以又想起来合作共赢了。

来自中国科学技术部的最新消息说,中欧卫星导航系统2015年终于结束长达8年之久的频率协调工作,中国北斗、欧洲伽利略这两大全球卫星导航系统,未来将基于频率共用理念,携手合作走向共同发展。

中国卫星是中国自行研制的卫星,其中最早的是10年4月24日,在酒泉卫星发射中心成功发射的东方红一号卫星,开创了中国航天史的新纪元。

此后,研发生产了各种特殊功能的卫星,主要包括卫星、气象卫星、通讯卫星、导航卫星、海洋卫星等。

用导航卫星对地面、海洋、空中和空间用户进行导航定位的技术。利用太阳、月球和其他自然天体导航已有数千年历史,由人造天体导航的设想虽然早在19世纪后半期就有人提出,但直到20世纪60年代才开始实现。1964年美国建成“子午仪”卫星导航系统,并交付海军使用,1967年开始民用。

13年又开始研制“导航星”全球定位系统。苏联也建立了类似的卫星导航系统。法国、日本、中国也开展了卫星导航的研究和试验工作。卫星导航综合了传统导航系统的优点,真正实现了各种天气条件下全球高精度被动式导航定位。特别是时间测距卫星导航系统,不但能提供全球和近地空间连续立体覆盖、高精度三维定位和测速,而且抗干扰能力强。

2021中国航天成就有哪些

船不仅用来载客、运货和装油,还有其他的许多用途。设计师为适应各种需要,设计出形形的船,组成一个船的大家族。

集装箱船

货船

我们来看看船的基本构造。船在水中前进时,它的外壳受到的阻力应当尽量的小。水对船壳有摩擦阻力,船壳越光滑,阻力越小,所以船的表面都做得很平整。钢铁船壳用平滑的焊接代替过去高低不平的铆接,阻力可减小10%。船在海水中停泊时,讨厌的牡蛎、藤壶会附着在船壳上,使船的表面粗糙不平,增加航行阻力,必须及时清除。在船壳表面还需要涂防生物污损的漆。船前进时,船头劈开水面,产生很高的波浪,使船头抬高,船上下摇摆,阻碍船前进。科学家发现把船舶做成球形,能抑制航行产生的波浪。如果你看到在船坞里修理的大船时,就会发现船头有一个球形的大鼻子,叫做球鼻艏。就是这个其貌不扬的结构,可以使船航行的速度提高,而且更加平稳。船高速航行时,在船的周围产生涡流,船上凹凸不平的地方和有孔洞的地方都会产生涡流。推进船用的螺旋桨旋转时,形成的涡流更为重要。为了减小这部分阻力,把船体做成流线型。在水下航行的潜水器、潜艇的整个外壳就像水滴,这种形状阻力最小。在螺旋桨和固定在船壳外的设备外面套上光滑的导流罩,也可以降低阻力。鱼和鲸的力量比人造的巨轮小得多,可是它们却能游得那么快,秘密在它们那柔顺的皮肤,能在水流冲击时顺着水势变形,上面还有一层黏性的物质,使皮肤变得滑溜溜的,从而减小了阻力,提高了游速。人们以这些生物为师,研究出类似海豚皮的有机材料聚氨基甲酸乙酯,蒙在潜艇外壳上,也能使潜艇在水下减小阻力,提高航速。

古船

在古代,船壳是用结实耐久的木材制成的。现代的船壳是用更结实、更宜于大量生产的钢板焊成的。船像鱼一样,在船底的中轴有一根龙骨,两边隔一段距离装上一根垂直于龙骨的肋骨,船的这套骨骼使它能够支撑重量,乘风破浪地航行。船的水下部分横断成几个舱,各个舱之间是水密的,有不透水的门可以相通,把门关起来,即使少数舱进了水也不会沉没。这种有隔舱结构的船还是我们中国人的祖先发明的呢!生于1254年的意大利旅行家马可·波罗,元朝时在中国住了几十年,他回国时就是坐的这种船,从泉州出海回到意大利,他十分佩服地向西方介绍了这种船的特点——隔舱结构,四桅四帆,还有指示方向用的罗盘,使西方人惊叹不已。

帆船

船前进的动力有一个很长的发展过程。最早是人划的桨。古希腊人的划桨船曾称雄爱琴海;太平洋小岛上的波利尼西亚人划着独木船向西航行几千千米到了澳大利亚、新西兰;一直到公元800年,北欧的海盗船仍然是人力划桨的。

用帆巧借风力,使船长上翅膀,开始了帆船时代。帆利用空气流,在帆的两面产生压力差,推动船前进。风的方向不一定符合船前进的方向,改变帆的角度,能利用各个方向的风,使船以之字形航行,最终达到前进的目的。西方的帆船在13~16世纪才发展起来。帆船发展的关键在于用结实的麻织成帆布,这种帆布比棉布结实,耐风吹雨淋太阳晒。整块的大帆很重,折叠起来很费人力,于是把一块大帆分成横幅较宽、纵幅较窄的几块较小的帆,再靠增加帆杠组合成一张大帆。不同位置、各种形状的帆各司其职,使18~19世纪的西方帆船成为一种工艺十分复杂的艺术品。由于帆船的动力有限,航速不高,操纵又很麻烦,需要很多水手,还有一定危险性,所以帆船在19世纪后期被蒸汽机轮船淘汰。近年来,有人提议给巨型轮船再装上帆或者能在风中旋转的转子圆筒,用计算机控制操纵,利用风的能量,以节约燃料。

军舰

出现蒸汽机以后,把它装到船上作动力,开始时用明轮推进,轮船就是这样得名的。可是大轮子成了风浪的靶子,在海里不实用。后来革掉了大轮子,用螺旋桨在水下推进,就使“轮船”无“轮”,只留下个名字了。螺旋桨的轴上装着桨叶,桨叶有个曲面,装在轴上呈螺旋形,桨叶在轴旋转时把水推向后方,水的反作用力使船受到推动力而向前走。船向前走时,船体附近的水产生和行船方向相同的流动,在设计船和螺旋桨的时候还得考虑这个问题。螺旋桨的旋转速度过高,或者形状设计得不对时,在桨附近会形成压力很低的区域,产生气泡,这就是所谓空化现象。空化产生的气泡不仅会发出很响的噪声,还会腐蚀螺旋桨,是个需要认真设计才能避免的问题。蒸汽机的热效率低,烧煤既费力又肮脏,所以后来又被烧柴油的内燃机代替。现在的船上大部分用多个汽缸的低速柴油机。在巨轮上也有用涡轮机的,以柴油作燃料,先在锅炉内烧蒸汽,再用蒸汽推动涡轮机带动螺旋桨;或者用涡轮机发电,用电机带动螺旋桨,这样操纵更为方便。军舰还有用核动力推动的。螺旋桨一般安在船尾,可以减少水流的阻力。要求机动灵活的军舰装有两个甚至多个螺旋桨,可以使军舰很快地转弯。海洋调查船必须会在海洋里停泊不动,或者用很低的速度航行,可以在船的两侧装上小功率的螺旋桨推进器。

船的速度越高,耗费的能量越大,超过一定速度以后,耗费的能量几乎以立方的比例增加。目前民用船的速度一般都在10~20节之间,比较经济。只有担负战斗任务的军舰、缉私快艇和游览、运动用的快艇才达到30节以上的速度。

船转弯、调速不像汽车那样容易,尤其是万吨巨轮,惯性很大,要想叫它停住,得滑行几千米到十几千米,进出港时还常常不能“自理”,得用拖船拖着它走。船艉小小的舵是确定船航行方向的工具,庞大的船得听它的支配,现代的船都用电动操舵。

潜艇

波浪的威力很大,能把万吨钢铁巨轮打得东摇西晃。船不但有左右的摇摆,还有前后的摇摆,有时还有扭动。没有坐船出过海的人常以为海洋就像诗人所描写的那样美丽雄壮,等到坐船出了海,尝到了晕船时那翻肠倒肚的滋味,才知道海洋的残酷。船摇摆的幅度太大,还会使船上的设备倾覆,仪器失灵,甚至使船翻沉。为了减轻船在波浪作用下的摇摆,在船的两侧装上小鳍,可在船左右摇摆时起稳定作用。在船舱里划出一部分装上压舱水,适当地调整,也可以使船平稳。

由于发动机不可能突然停车、倒车,因而要使船减速、停泊是比较困难的事。用桨叶角度可以操纵的螺旋桨能使小型的船在几秒钟内停住不动,可是对以15节速度前进的40万吨油轮用同样的方法控制的话,得前进4.5千米才能停得住。将船舷两侧的锚连同锚链抛下海,锚钩住海底,可以把船固定住,一般锚链的长度比水深要大几倍才行,可是如果水深超过500米时,锚就无能为力了,因为船上载不动那么长的锚链。即使抛了锚,船在风和流的作用下还会移动,随着涨潮、落潮时潮流的改变船会绕着锚旋转。要使船在停泊时不移动,完成钻探等任务,就要用多个锚,从船的不同部位分别抛下去。但这时船受风浪的作用特别厉害,抛锚有很大困难。不是有特殊要求,船都是单点系泊的。

卫星导航系统示意图

先进的船的驾驶室里,各种仪器设备五花八门。有自动驾驶仪,能根据预先划定的航线操纵航行,还能根据气象导航台的指示修正航线。全球卫星导航系统GPS的接收机能根据天上21颗卫星发出的信号确定船位,还能精确地告诉你船的位置。用声学测深仪可以不断测出船下方的水深。声呐、雷达可以分别侦察水下、空中的障碍。通信设备可以用电磁波把船与全世界联系在一起。船体上有许多铁磁物质,船壳就是铁的,会屏蔽地磁场,干扰罗盘的工作。人们都有这样的经验,陀螺转动起来就能向一个方向前进,用同样的原理,用高速旋转的陀螺仪能保持稳定的参考方向,用这个方向代替容易受铁磁物质干扰的地磁场参考方向,这样做成的罗盘不会受铁磁的干扰。

海洋调查船

除了推进和驾驶、导航外,船上还有系泊、起重用的绞车,抽水、抽油用的泵,通信设备,照明设备,生活设施,供电系统等,可以说是一座浮在海上的城市。

有些特殊用途的船必须专门设计。如前面已经提到的科学考察船和海洋调查船,必须适应千变万化的科学实验的要求。此外还有许多种专用船,如拖船、浮吊船、潜水母船、冷藏加工船、打桩船、铺缆船和水船等,都必须专门设计。拖船的拖曳力量要大,航速则不需要很高,船上的远航设备也可以简单一些,但它得能把比它本身大几百倍的船或平台、沉箱等工程设备拖着走,或者是顶推、侧推,帮助它们进出港、靠离码头、进入工作位置。浮吊船是海上的起吊设备,一般本身不会航行,要用拖船拖着走,上面有几十米高的吊杆、功率很大的绞车,能在海上吊起成百吨重的重物,进行安装调试。潜水母船上有潜水员潜水作业所需的装具、气体、减压舱和水下居住舱等设备,它的职责是带着潜水员执行潜水任务。冷藏加工船是一座海上的冷库和食品厂,可以把在海里捕捞的水产就地加工保鲜。打桩船能在海上给海岸工程和近海工程的设施打桩,在上面建造海上建筑物。铺缆船船艏有铺缆设备,专门用来在海上铺设海底电缆、海底光缆。水船专门为海上作业的船和缺乏淡水的岛屿运送淡水。

水对船的阻力比空气对船的阻力大得多。海豚游泳时不断跃出水面,可以增大前进的速度。水翼船、气垫船和掠海翼船等特种船也学了海豚的这个本领。

水翼船的船体下部装有水翼,低速航行时与普通船一样浮在水面上前进,船速增加时水流作用在水翼上产生升力,把船体前部托出水面,作用在船体前部的摩擦力和波浪阻力就都不存在了,总的阻力大约小了一半。水翼船还有两个优点,一个是受波浪的作用小,因此横摇小;一个是大部分船体在大气中航行,惯性比在水中小得多,发动机停止运转后,比水面船舶容易停船。

气垫船

气垫船周围被橡胶制成的围裙围住,船底的风机向下鼓风时,在围裙所围的空间,船底和水面之间形成气垫,把整艘船都抬出水面,用空气中的螺旋桨使船前进。这样,船在水中所受的巨大阻力都不存在了。实际上气垫船的航行跟飞机更为接近。

水翼船和气垫船都要把船抬起来,所以不可能做得很大。海面的波浪如果较大时,它们就不能工作了,所以一般都把它们作为快速渡轮或近距离客船使用。

掠海翼船是一种介于船与飞机之间的交通工具。在海里滑行一段路以后,腾空而起,但又不像水上飞机那样升上高空,而是在海面以上不高的空中飞行。前苏联制造的“里海怪物”号能载100吨左右重量,飞行数百千米。这种交通工具是很有发展前途的,比飞机经济,比轮船快得多。

卫星电话详细资料大全

中国航天事业成就有:

1、经过50多年的创业发展,在党中央、院的正确决策和领导下,航天事业经过发展导弹、运载火箭、人造卫星、载人航天等几个阶段,目前已经形成了体系,形成了规模。2017年6月,我国硬X射线调制望远镜飞入太空,它可以观测黑洞、中子星和伽马射线暴等爆发活动天体。

面向未来,中国人对“星空奥秘”的追问永不止步。未来五年,中国研制并发射5颗新的科学卫星;基于X射线属性特征、高能电子和伽马射线能量与空间分布等的科学探测将进一步深入,在空间科学探索中中国有望取得新的重大突破。

2、我们国家在卫星方面已经拥有通讯、遥感、、导航定位、气象、科学实验、海洋七大卫星系列,我国是世界上第五个把卫星送上天的国家,第三个掌握卫星回收技术的国家,第五个独立研制和发射地球静止轨道通信卫星的国家。

3、在运载火箭方面,截止2017年我国共有12种不同型号的长征运载火箭,具备了9.5吨的近地轨道、5.2吨的同步转移轨道的运载能力。

4、在测控通信领域,建立了覆盖国家本土、太平洋和非洲地区的航天测控网,基本满足了航天活动的测控需要。?

5、在地面和应用系统方面,建成了包括中国遥感卫星地面站、国家卫星气象中心、国家卫星海洋应用中心和中国卫星应用中心等卫星地面和应用系统。

长征系列运载火箭

长征系列运载火箭是中国自行研制的航天运载工具。长征运载火箭起步于20世纪60年代,10年4月24日“长征一号”运载火箭首次发射“东方红一号”卫星成功。

长征火箭已经拥有退役、现役共计4代17种型号。其中长征一号、长征二号、长征二号E、长征三号、长征四号甲5个型号已退役;

长征二号丙、长征二号丁、长征二号F、长征三号甲、长征三号乙、长征三号丙、长征四号乙、长征四号丙、长征五号、长征六号、长征七号和长征十一号12个型号在役。另有长征五号乙、长征六号甲、长征七号甲、长征八号4个型号在研,长征十一号甲、长征九号2个型号论证中。

卫星电话是基于卫星通信系统来传输信息的通话器,也就是卫星中继通话器。卫星中继通话器是现代移动通信的产物,其主要功能是填补现有通信(有线通信、无线通信)终端无法覆盖的区域,为人们的工作提供更为健全的服务。现代通信中,卫星通信是无法被其他通信方式所替代的,现有常用通信所提供的所有通信功能,均已在卫星通信中得到套用。

经过近两年的努力,中国电信首次面向商用市场放号,我国进入到卫星移动通信的“手机时代”,填补了国内自主移动通信系统的空白,打破依赖国外卫星移动通信服务的现状。天通卫星覆盖范围广,通信能力强,服务无盲区。

基本介绍 中文名 :卫星电话 外文名 :satellite phone 原理 :基于卫星通信系统 类别 :卫星中继通话器 原理,业务类型,继通话器业务,通话器业务,发展历程,其他业务,中国历程,系统组成,空间系统,地面系统,通信卫星,基本原理,优点缺点,系统分类,按套用分类,按轨道分类,按频率分类,按服务区域,按卫星轨道,问题,距地球过远,信号时延,轨道紧张, 原理 高轨道卫星(GEO)移动通信业务的特征来源于使用位于赤道上方35800km的对地同步卫星开展通信业务的条件。在这个高度上,一颗卫星几乎可以覆盖整个半球,形成一个区域性通信系统,该系统可以为其卫星覆盖范围内的任何地点提供服务,例如美国一颗卫星就可以覆盖美国大陆的连续部分,如阿拉斯加、夏威夷、波多黎各几百海里的近海地区。在GEO卫星系统中,只需要一个国内交换机对呼叫进行选路,信令和拨号方式比较简单,任何移动用户都可以被呼叫,无需知道其所在地点。同时,移动呼叫可以在任何方便的地点落地,不需要昂贵的长途接续,卫星通信费用与距离无关,它与提供本地业务的陆地系统的费用相近。当卫星对地面台站的仰角较大的时候(如在美国本土经度范围内,卫星对地面的仰角一般在20°~56°之间),移动天线具有朝上指向的波束,可以与地面的反射区分开,这样就可以几乎完全避免在陆地系统中常见的深度多径衰落。卫星信号因其仰角大,仅仅穿过树冠,从而使由枝叶引起的衰减降到只有几dB。 业务类型 卫星移动通信业务可以提供两种普通的业务:一种为公共卫星中继通话器,另一种是专用卫星中继通话器,前者需要互联公用交换通话器网,使一个移动体呼叫世界上任一个固定通话器,后者只是在一移动台和它的调度员之间进行。这两种业务都可以传送通话器,寻呼和定位信息。这两种业务也可以结合起来形成特有的通信能力。 继通话器业务 该网路包括卫星,工作于L频段的移动台、工作于K频段的网路操作中心和关口地球站/交换机互连完成,它使用由网路操作中心经专用信令信道指配给移动台和关口站的射频信号。为了建立一个呼叫和确定接续路由,移动台拨叫终点地址通话器号码,同时也给出自己的号码。网路操作中心指配给该移动台一个L频段射频信道,并将相应的K频段信道指配给靠近固定通话器地址的关口站,在此产生通常的通话器信令,以建立呼叫。网路操作中心记录路由、主叫和通话时间以便计算。另一方面上的操作与此类似。在提供长途连线灵活接续能力上,关口站的重要性是值得注意的,可能需要成百上千个关口站。呼叫一旦建立,话音带内数据、分组讯息、定位和寻呼等业务信息均可以传递,一个无线台可以完成所有这些功能。 通话器业务 该系统包括卫星、移动台和位于用户建筑外的基站,该基站由简化的关口(无呼叫路由选择和长途互连设备),根据需要指配给系统一条或几条电路,它可以使用简单的“按下即谈话”操作,也可以使用更复杂的交换方式,以便将系统的时间指配给不同的用户用于不同的目的。每一个移动体可以使用单一无线台完成调度通话器、不同速率数据、分组讯息以及寻呼、定位讯息的传递。若该无线台可以调谐到上面所提到的公用卫星中继通话器信令信道,则它也可以具有无线公用通话器功能。 发展历程 自从1957年10月4日苏联成功发射了第一颗人造地球卫星以来,世界许多国家相继发射了各种用途的卫星。这些卫星广泛套用于科学研究,宇宙观测,气象观测,国际通信等许多领域。1958年12月美国宇航局(NASA)发射了“斯科尔”(SCORE)广播试验卫星,进行磁带录音信号的传输。1960年8月,又发射了“回声”(ECHO)无源发射卫星,首次完成了有源延迟中继通信。1962年7月美国通话器电报公司AT&T发射了“电星一号”(TELESTAR-1)低轨道通信卫星,在6GHz/4GHz实现了横跨大西洋的通话器、电视、传真和数据的传输,奠定了商用卫星通信的技术基础。 1965年苏联发射了“闪电”(MOLNIYA)同步卫星,完成了苏联和东欧之间的区域性通信和电视广播。至此,经历了近20年的时间,完成了通信卫星的试验,并使卫星通信的实用价值得到了广泛的承认。 1964年8月成立了商用的卫星临时组织。13年2月更名为国际通信卫星自治(INTELSAT)。这是一个国际性商用卫星通信机构,截止1986年已有112个国家参加该组织(包括中国),目前正在使用的国际通信卫星主要是INTELSAT卫星公司(COMSAT)发射的“晨鸟”(Early Bird),也成为“INTELSAT-Ⅰ”国际通信卫星。自此之后,先后发射了六代国际通信卫星-Ⅱ~Ⅶ。前四代已经完成了使命,现在正在运行的包括IS-Ⅴ-A,IS-Ⅵ,IS-Ⅶ。 1980年发射的Ⅴ号和1985年发射的Ⅴ-A号国际卫星是一种大容量国际商用卫星。有6颗Ⅴ号卫星在同时工作,用于沟通300多个地球站。该卫星载有七副通信天线。转发器共有27个,可同时传送12500路通话器和两路彩色电视信号。 1989年发射的Ⅵ号国际卫星是重量为1600公斤,有46个转发器,通信容量为24000条双向话路和3路电视,用数字倍增设备后扩大为12万个话路。该卫星转发器不仅使用C波段(6/4GHz),而且在点波束处还使用Ku频段(14/11GHz)。 1992年发射的Ⅶ号国际通信卫星是为了替代于1993年到期的Ⅴ-A国际通信卫星而研制的。该卫星外形与Ⅴ-A卫星相似,也是三轴稳定,在轨精度达±0.01°。该星用了许多新技术,包括: 1. 4个波束可按地面指令而指向地球上任何地区。 2. 可根据业务需要改变卫星全球波束,将其分配给C波段点波束,使转发器得到充分的利用。 3. C波段半球/区域载荷用四重频率复用,C波段全球/点波束用二重频率复用,Ku波段用二重频率复用。 4. 同时用空间波束隔离及极化隔离,使隔离度提高到27dB以上。全球波束覆盖区及极化隔离可达到35dB以上。 其他业务 随着固定卫星业务的迅速发展,提出了移动卫星业务。移动通信卫星业务是指装载在飞机,舰船、汽车上的移动通信终端所用的同步卫星通信。套用最早的是海上移动卫星业务,16年第一颗“海事卫星1号”(MARISAT-1)发射到大西洋上空。随后于19年成立“国际海事卫星组织”(INMARSAT)。 广播卫星业务也可归入固定卫星业务。如加拿大的“通信技术卫星”(CTS),美国的“套用技术卫星”(ATS-6),苏联的“静止”卫星(STATSIONAR),日本的“日本广播卫星”(JBS)等。广播卫星业务是为了使用户能直接接收来自卫星转发等广播电视节目。包括由简易家庭用接收设备直接接收等“个体接收”和先由大型天线接收后再分送给一般用户等“集体接收”两种方式。 其他卫星业务包括无线电导航卫星(如美国海军导航卫星NNSS),地球探测卫星(如美国陆地卫星LANDSAT)、气象卫星(如美国NOAA卫星)、业余无线电卫星(如OSCAR),以及报时,标准频率,射电天文,宇宙开发、研究卫星等业务。 中国历程 中国自10年4月成功发射了第一颗卫星以来,已经先后发射了数十颗各种用途的卫星。年4月,发射了第一颗试验用“同步通信卫星”STW-1(即东方红二号)。1986年2月于中国西昌发射场,用长征3号火箭成功发射第二颗“实验通信卫星”STW-2。该卫星位于东经103°赤道上空(马六甲海峡南端),等经线贯穿中国昆明、成都、兰州等地。卫星高度35786公里。该同步卫星形状呈圆柱形,直径2.1米,总高度3.67米,轨道重量429公斤,太阳能电池功率为135瓦。卫星点波束天线直径1.22米,用双自旋稳定方式。卫星有两个转发器,工作频率为6/4GHz。用于转播广播电视和传送通话器,设计容量为1000路通话器。预期寿命为3年。 1988年3月,又于西昌发射场,用长征3号火箭发射成功第一颗“实用通信卫星”,即“东二甲”卫星该星定点于东经87.5°赤道上空。1988年12月又发射了“东二甲-2”卫星,定点于110.5°E。“东三甲”卫星是“东二甲”卫星的改进型卫星。其天线改成椭圆波束,设计寿命延长为四年,加大了太阳能电池功率。转发器增加为4个,说明中国的卫星通信技术已经迈入国际领先领域。 系统组成 空间系统 由于移动天线终端尺寸小,在L频段每信道所需卫星辐射功率较固定卫星业务中相应的信道的功率为大,预计所需的卫星功率为3000W,天线直径约为5m,用多波束覆盖业务区。这就要使每个信号选定从单一K频段波束到所需L频段波束以及反向的接续路由。K频段被划分几段,每段对应L频段的一个特定的点波束。为解决以下两个难点: (1)每个L段上的业务无法精确预测,而且随时变化; (2)国内业务和国际业务的分配很复杂,也使得卫星移动通信系统业务的陆地、海上、空中三个部分的分配很困难,以便与本波束内业务取得一致。但是,这里不存在L频段到L频段的路径。 地面系统 (1)卫星移动无线电台和天线 卫星移动无线电台和陆地移动无线电台的功能、复杂性。部件数量和类型很相似,只是卫星移动无线电台使用5kHz信道间隔而不是25或30kHz。电台话音、调度通话器、数据、讯息分组、定位、寻呼等都属于该卫星中继通话器系统本身的功能,每个卫星移动电台都需要一个频率综合器,以便将他们调谐到所需的5kHz信道。该系统还用专用信令信道,以免系统在公共安全紧急救援期间饱和,并为天线的指向调整提供参考。信令信道在移动台从一个卫星波束进入相邻卫星波束时,为波束转换提供幅度参考电平。 为获得满意的话音质量以及邻星的频率再用,需要约13dBi的高增益天线。天线的辐射图形可以是圆的或是椭圆的,在方位角上通过电动的机械方法实现调整。也可以通过圆形阵列的切换达到近13dBi的增益。 (2)关口站、基站 地球站工作于K频段,由于卫星移动通信服务的基本结构是每载波单信道,所以关口站必须自动按网控中心从信令信道传来的指令调谐到5kHz信道。基站需要频率合成器,可以工作在固定信道。这两种站都使用3.3m天线,但通信密度大的地区的关口站需要较大的天线。关口站应有足够的容量,以免阻塞;还要有足够备份以保证高的可用性。一个出故障的关口站将被旁路,这时呼叫由相邻的关口站临时转接。 通信卫星 基本原理 卫星通信系统是由空间部分——通信卫星和地面部分——通信地面站两大部分构成的。在这一系统中,通信卫星实际上就是一个悬挂在空中的通信中继站。它居高临下,视野开阔,只要在它的覆盖照射区以内,不论距离远近都可以通信,通过它转发和反射电报、电视、广播和数据等无线信号。通信卫星工作的基本原理如图所示。从地面站1发出无线电信号,这个微弱的信号被卫星通信天线接收后,首先在通信转发器中进行放大,变频和功率放大,最后再由卫星的通信天线把放大后的无线电波重新发向地面站2,从而实现两个地面站或多个地面站的远距离通信。举一个简单的例子:如北京市某用户要通过卫星与大洋彼岸的另一用户打通话器,先要通过长途通话器局,由它把用户通话器线路与卫星通信系统中的北京地面站连通,地面站把通话器信号发射到卫星,卫星接到这个信号后通过功率放大器,将信号放大再转发到大西洋彼岸的地面站,地面站把通话器信号取出来,送到受话人所在的城途通话器局转接用户。 卫星通讯系统示意图 电视节目的转播与通话器传输相似。但是由于各国的电视制式标准不一样,在接收设备中还要有相应的制式转换设备,将电视信号转换为本国标准。电报、传真、广播、数据传输等业务也与通话器传输过程相似,不同的是需要在地面站中用相应的终端设备。 随着航天技术日新月异的发展,通信卫星的种类也越来越多。按服务区域划分,有全球、区域和国内通信卫星。按用途分,有一般通信卫星、广播卫星、海事卫星、跟踪和数据中继卫星以及各种军用卫星。 优点缺点 卫星通信同现在常用的电缆通信、微波通信等相比,优点缺点如下: 远:是指卫星通信的距离远。俗话说,“站的高,看的远”,同步通信卫星可以“看”到地球最大跨度达一万八千余公里。在这个覆盖区内的任意两点都可以通过卫星进行通信,而微波通信一般是50公里左右设一个中继站,一颗同步通信卫星的覆盖距离相当于三百多个微波中继站; 多:指通信路数多、容量大。一颗现代通信卫星,可携带几个到几十个转发器,可提供几路电视和成千上万路通话器; 好:指通信质量好、可靠性高。卫星通信的传输环节少,不受地理条件和气象的影响,可获得高质量的通信信号; 活:指运用灵活、适应性强。它不仅可以实现陆地上任意两点间的通信,而且能实现船与船,船与岸上、空中与陆地之间的通信,它可以结成一个多方向、多点的立体通信网; 省:指成本低。在同样的容量、同样的距离下,卫星通信和其他的通信设备相比较,所耗的资金少,卫星通信系统的造价并不随通信距离的增加而提高,随着设计和工艺的成熟,成本还在降低; 高:指通信资费标准高于常用的电缆通信、微波通信,是其资费标准的十倍乃至几十倍; 差:指在大型建筑内或山体等物体遮盖住设备本身时通信信号无或闪烁不定; 慢:指在通话过程中有延时现象,导致接续不畅。 系统分类 卫星移动通信系统的分类可按其套用来分,也可以按他们所用的技术手段来分。 按套用分类 可分为海事卫星移动系统(MMSS)、航空卫星移动系统(AMSS)和陆地卫星移动系统(LMSS)。海事卫星移动系统主要用于改善海上救援工作,提高船舶使用的效率和管理水平,增强海上通信业务和无线定位能力。航空卫星移动系统主要用于飞机和地面之间为机组人员和乘客提高话音和数据通信。陆地卫星移动系统主要用于为行驶的车辆提供通信。 海事卫星电话通信 按轨道分类 通信卫星的运行轨道有两种。一种是低或中高轨道。在这种轨道上运行的卫星相对于地面是运动的。它能够用于通信的时间短,卫星天线覆盖的区域也小,并且地面天线还必须随时跟踪卫星。另一种轨道是高达三万六千公里的同步定点轨道,即在赤道平面内的圆形轨道,卫星的运行周期与地球自转一圈的时间相同,在地面上看这种卫星好似静止不动,称为同步定点卫星。它的特点是覆盖照射面大,三颗卫星就可以覆盖地球的几乎全部面积,可以进行二十四小时的全天候通信。 按频率分类 按照该卫星所使用的频率范围将卫星划分为L波段卫星,Ka波段卫星等等。 按服务区域 随着航天技术日新月异的发展,通信卫星的种类也越来越多。按服务区域划分,有全球、区域和国内通信卫星。顾名思义,全球通信卫星是指服务区域遍布全球的通信卫星,这常常需要很多卫星组网形成。而区域卫星仅仅为某一个区域的通信服务。而国内卫星范围则更窄,仅限于国内使用,其实各种分类方式都是想将卫星的某一特性更强地体现出来,以便人们更好的区分各种卫星。 按卫星轨道 以卫星为基础的移动通信的套用和研制情况,大体上可分为3种情况: (1) 卫星不动 目前已经广泛套用的Inmarsat以及正积极开发中的AMSC(美国),CELSAT(美国),MSS(加拿大)、Mobilesat(澳大利亚)等移动通信系统均属于这种情况。这些系统已经实现到车,船和飞机等移动体上的通信,实现到手机的通信指日可待。 (2) 卫星动终端不动 它是通过非同步轨道卫星实现到较大终端(例如移动通信网的基站)的通信,而以后再连线到手持机的用户。Calling(美国)系统大体上属于这种情况。移动用户通过关口站上的卫星进行通信也基本属于这种情况。 (3) 卫星动终端也动 当前提出来的大量中、低轨道系统(如铱星系统、全球星系统、奥迪赛系统)极化均属这种情况,他们的特征就是做到终端手持化,实现了卫星通信适应未来个人移动通信的需求。 问题 自本世纪60年代以来,人类已经将数以百计的通信广播卫星送入高轨道(GEO),在实现国际远距离通信和电视传输方面,这些卫星一直担当主角。但是,高轨道(GEO)卫星也存在一些问题: 距地球过远 自由空间中,信号强度反比于传输距离的平方 高轨道(GEO)卫星距地球过远,需要有较大口径的通信天线。 信号时延 在通话器通话中,这种时延会使人感到明显的不适应。在数据通信中,时延限制了反应速度,对于2001年台式超级计算机来说,半秒钟的时延意味着数亿位元组的信息滞留在缓冲器中。 轨道紧张 高轨道(GEO)卫星只有一条,相邻卫星的间隔又不可以过小,因为地球站天线分辨卫星的能力受限于天线口径的大小。在Ka频段(17~30GHz)为了能够分出2°间隔的卫星,地面站天线口径的合理尺寸应不小于66cm。按这样计算,高轨道(GEO)卫星只能提供180颗同轨道位置。这其中还包括了许多实用价值较差,处于大洋上空的位置。